
TelME: Teacher-leading Multimodal Fusion Network for Emotion
Recognition in Conversation

Taeyang Yun, Hyunkuk Lim, Jeonghwan Lee, Min Song∗

Yonsei University, Seoul, South Korea
{yuntaeyang0629, lsh950919, jeonghwan.ai, min.song}@yonsei.ac.kr

Abstract
Emotion Recognition in Conversation (ERC)
plays a crucial role in enabling dialogue sys-
tems to effectively respond to user requests.
The emotions in a conversation can be identi-
fied by the representations from various modal-
ities, such as audio, visual, and text. How-
ever, due to the weak contribution of non-verbal
modalities to recognize emotions, multimodal
ERC has always been considered a challenging
task. In this paper, we propose Teacher-leading
Multimodal fusion network for ERC (TelME).
TelME1 incorporates cross-modal knowledge
distillation to transfer information from a lan-
guage model acting as the teacher to the non-
verbal students, thereby optimizing the efficacy
of the weak modalities. We then combine multi-
modal features using a shifting fusion approach
in which student networks support the teacher.
TelME achieves state-of-the-art performance in
MELD, a multi-speaker conversation dataset
for ERC. Finally, we demonstrate the effec-
tiveness of our components through additional
experiments.

1 Introduction

Emotion recognition holds paramount importance,
enhancing the engagement of conversations by pro-
viding appropriate responses to the emotions of
users in dialogue systems (Ma et al., 2020). The ap-
plication of emotion recognition spans various do-
mains, including chatbots, healthcare systems, and
recommendation systems, demonstrating its versa-
tility and potential to enhance a wide range of appli-
cations (Poria et al., 2019). Emotion Recognition
in Conversation (ERC) aims to identify emotions
expressed by participants at each turn within a con-
versation. The dynamic emotions in a conversation
can be detected through multiple modalities such
as textual utterances, facial expressions, and acous-
tic signals (Baltrušaitis et al., 2018; Liang et al.,
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1Our code can be found here: https://www.github.

com/yuntaeyang/TelME

Figure 1: Examples of multimodal ERC. Even the same
"Okay" answer varies depending on the conversation
situation and captures emotions in various modalities.

2022; Majumder et al., 2019; Hu et al., 2022b;
Chudasama et al., 2022). Figure 1 illustrates an
example of a multimodal ERC.

Much research on ERC has mainly focused on
context modeling from text modality, disregarding
the rich representations that can be obtained from
audio and visual modalities. Text-based ERC meth-
ods have demonstrated that contextual information
derived from text data is a powerful resource for
emotion recognition (Kim and Vossen, 2021; Lee
and Lee, 2021; Song et al., 2022a,b). However,
non-verbal cues such as facial expressions and tone
of voice, which are not covered by text-based meth-
ods, provide important information that needs to
be explored in the field of ERC. Multimodal ap-
proaches demonstrate the possibility of integrating
features from three modalities to improve the ro-
bustness of ERC systems (Mao et al., 2021; Chu-
dasama et al., 2022; Hu et al., 2022b). Nevertheless,
these frameworks frequently ignore the varying de-
grees of impact the individual modalities have on
emotion recognition and instead treat them as ho-
mogeneous components. This implies a promising
opportunity to improve the ERC system by differ-
entiating the level of contribution made by each
modality.
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In this paper, we propose Teacher-leading Mul-
timodal fusion network for the ERC task (TelME)
that strengthens and fuses multimodal information
by accentuating the powerful modality while bol-
stering the weak modalities. Knowledge Distilla-
tion (KD) can be extended to transfer knowledge
across modalities, where a powerful modality can
play the role of a teacher to share knowledge with
a weak modality (Hinton et al., 2015; Xue et al.,
2022). While Figure 2 shows the robustness of text
in ERC tasks compared to the other two modalities,
the other modalities present valuable information
nonetheless. Thus, TelME enhances the representa-
tions of the two weak modalities through KD utiliz-
ing the text encoder as the teacher. Our approach
aims to mitigate heterogeneity between modalities
while allowing students to learn the preferences of
the teacher. TelME then incorporates Attention-
based modality Shifting Fusion, where the student
networks strengthened by the teacher at the dis-
tillation stage assist the robust teacher encoder in
reverse, providing details that may not be present
in the text. Specifically, our fusion method creates
displacement vectors from non-verbal modalities,
which are used to shift the emotion embeddings of
the teacher.

We conduct experiments on two widely used
benchmark datasets and compare our proposed
method with existing ERC methods. Our results
show that TelME performs well on both datasets
and particularly excels in multi-party conversations,
achieving state-of-the-art performance. The abla-
tion study also demonstrates the effectiveness of
our knowledge distillation strategy and its interac-
tion with our fusion method.

Our contributions can be summarized as follows:

• We propose Teacher-leading Multimodal fu-
sion network for Emotion Recognition in Con-
versation (TelME). The proposed method con-
siders different contributions of text and non-
verbal modalities to emotion recognition for
better prediction.

• To the best of our knowledge, we are the
first to enhance the effectiveness of weak non-
verbal modalities for the ERC task through
cross-modal distillation.

• TelME shows comparable performance in two
widely used benchmark datasets and espe-
cially achieves state-of-the-art in multi-party
conversational scenarios.

Figure 2: Unimodal Performance on MELD dataset

2 Related Work

2.1 Emotion Recognition in Conversation

Recently, ERC has gained considerable attention
in the field of emotion analysis. ERC can be cate-
gorized into text-based and multimodal methods,
depending on the input format. Text-based methods
primarily focus on context modeling and speaker
relationships (Jiao et al., 2019; Li et al., 2020; Hu
et al., 2021a). In recent studies (Lee and Lee, 2021;
Song et al., 2022a), context modeling has been car-
ried out to enhance the understanding of contextual
information by pre-trained language models using
dialogue-level input compositions. Additionally,
there are graph-based approaches (Zhang et al.,
2019; Ishiwatari et al., 2020; Shen et al., 2021;
Ghosal et al., 2019) and approaches that utilize ex-
ternal knowledge (Zhong et al., 2019; Ghosal et al.,
2020; Zhu et al., 2021).

On the contrary, multimodal methods (Poria
et al., 2017; Hazarika et al., 2018a,b; Majumder
et al., 2019) reflect dialogue-level multimodal fea-
tures through recurrent neural network-based mod-
els. Other multimodal approaches (Mao et al.,
2021; Chudasama et al., 2022) integrate and manip-
ulate utterance-level features through hierarchical
structures to extract dialogue-level features from
each modality. EmoCaps (Li et al., 2022) considers
both multimodal information and contextual emo-
tional tendencies to predict emotions. UniMSE (Hu
et al., 2022b) proposes a framework that leverages
complementary information between Multimodal
Sentiment Analysis and ERC. Unlike these meth-
ods, our proposed TelME is one in which the strong
teacher leads emotion recognition while simultane-
ously bolstering attributes from weaker modalities



Figure 3: The overview of TelME

to complement and enhance the teacher.

2.2 Knowledge Distillation

The initial proposition of KD (Hinton et al., 2015)
involves transferring knowledge by reducing the
KL divergence between the prediction logits of
teachers and students, demonstrating its effective-
ness through improved performance of the student
models. Subsequently, KD has been extended
to distillation between intermediate features (Heo
et al., 2019). Furthermore, KD approaches (Gupta
et al., 2016; Jin et al., 2021; Tran et al., 2022) have
also been shown to transfer knowledge between
modalities effectively in multimodal studies. Li
et al. (2023b) mitigate multimodal heterogeneity by
constructing dynamic graphs in which each vertex
exhibits modality and each edge exhibits dynamic
KD. However, since this work is not a study of
ERC and is based on graph distillation, there is an
intrinsic difference from our KD strategy. Ma et al.
(2023) proposes a transformer-based model utiliz-
ing self-distillation for ERC. Our proposed method,
in contrast, uses response and feature-based distilla-
tion simultaneously to maximize the effectiveness
of two other modalities by the teacher network
based on text modality.

3 Method

3.1 Problem Statement

Given a set of conversation participants S, ut-
terances U , and emotion labels Y , a conver-
sation consisting of k utterances is represented
as [(si, u1, y1), (sj , u2, y2, ..., (si, uk, yk)], where

si, sj ∈ S are the conversation participants. If
i = j, then si and sj refer to the same speaker.
yk ∈ Y is the emotion of the k-th utterance in a
conversation, which belongs to one of the prede-
fined emotion categories. Additionally, uk ∈ U is
the k-th utterance. uk is provided in the format of a
video clip, speech segment, and text transcript. i.e.,
uk = {tk, ak, vk}, where {t, a, v} denotes a text
transcript, speech segment, and a video clip. The
objective of ERC is to predict yk, the emotion cor-
responding to the k-th utterance in a conversation.

3.2 TelME

3.2.1 Model Overview

We propose Teacher-leading Multimodal fusion
network for ERC (TelME), as illustrated in Fig-
ure 3. This framework is devised based on the
hypothesis that by exploiting the varying levels of
modality-specific contributions to emotion recog-
nition, there is a potential to enhance the overall
performance of an ERC system. Therefore, we in-
troduce a strategic approach that focuses on accen-
tuating the powerful modality while bolstering the
weak modalities. We first extract powerful emo-
tional representations through context modeling
from text modality while capturing auditory and vi-
sual features of the current speaker from non-verbal
modalities. However, due to the limited emotional
recognition capability of audio and visual features
as well as the heterogeneity between the modali-
ties, effective multimodal interactions cannot be
guaranteed (Zheng et al., 2022). We thus mitigate
the heterogeneity between modalities while maxi-



mizing the effectiveness of non-verbal modalities
by distilling emotion-relevant knowledge of the
teacher model into non-verbal students. We also
use a fusion method in which strong emotional
features from the teacher encoder are shifted by re-
ferring to representations of students strengthened
in reverse. In the subsequent sections, we discuss
the three components of TelME: Feature Extrac-
tion, Knowledge Distillation, and Attention-based
modality Shifting Fusion.

3.2.2 Feature Extraction
Figure 3 visually illustrates how each modality en-
coder receives its corresponding input to extract
emotional features. In this section, we explain the
methodologies employed to generate emotional fea-
tures corresponding to each modality’s input sig-
nals.

Text: Following previous research (Lee and Lee,
2021; Song et al., 2022a), we conduct context mod-
eling, considering all utterances from the inception
of the conversation up to the k-th turn as the context.
To handle speaker dependencies and differentiate
between speakers, we represent speakers using the
special token, < si >. Additionally, we construct
the prompt, "Now < si > feels < mask >" to
emphasize the emotion of the most recent speaker.
We report the effect of the prompt in Appendix A.1.
The emotional features are derived from the em-
bedding of the special token, < mask >. For our
text encoder, we employ the modified Roberta (Liu
et al., 2019), which has exhibited its efficacy across
various natural language processing tasks. We can
extract emotional features from the text encoder as
follows.

Ck = [< si >, t1, < sj >, t2, ..., < si >, tk] (1)

Pk = Now < si > feels < mask > (2)

FTk
= TextEncoder(Ck < /s > Pk) (3)

where < si > is the special token indicating the
speaker and < /s > is the separation token of
Roberta. FTk

∈ R1×d is the embeddings of the
mask token, < mask > and d is the dimension of
the encoder.

Audio: Self-supervised learning using Trans-
former has witnessed remarkable achievement, not
only within the field of natural language processing
but also in the realms of audio and video (Berta-
sius et al., 2021; Baevski et al., 2022). In line
with this trend, we set the initial state of our audio

encoder with data2vec (Baevski et al., 2022). To
focus solely on the voice of the current speaker, we
only utilize a speech segment of the k-th utterance,
denoted as ak. This speech segment is processed
according to the pre-trained processor. The audio
encoder then extracts emotional features from the
processed input as follows.

Fak = AudioEncoder(ak) (4)

where Fak ∈ R1×d is the embeddings of ak and d
is the dimension of the encoder.

Visual: Following the same reasoning as the
audio modality, we configure the initial state of
our visual encoder using Timesformer (Bertasius
et al., 2021). In order to concentrate exclusively
on the facial expressions of the current speaker,
we solely utilize a video clip of the k-th utterance,
denoted as vk. We extract the frames corresponding
to the k-th utterance from the video and construct
vk through image processing. The visual encoder
then extracts emotional features from the processed
input as follows.

Fvk = V isualEncoder(vk) (5)

where Fvk ∈ R1×d is the embedding of vk and d is
the dimension of the encoder.

3.2.3 Knowledge Distillation
Addressing the challenge of heterogeneity between
modalities and low emotional recognition contri-
butions of non-verbal modalities holds great po-
tential in facilitating satisfactory multimodal in-
teractions (Zheng et al., 2022). Thus, we distill
strong emotion-related knowledge of a language
model that understands linguistic contexts, thereby
augmenting the emotional features extracted from
the other two modalities with comparatively lower
contributions. We employ two distinct types of
knowledge distillation concurrently: response and
feature-based distillation. The overall loss for the
student can be composed of the classification loss,
response-based distillation loss, and feature-based
distillation loss, i.e.,

Lstudent = Lcls + αLresponse + βLfeature (6)

where α and β are the factors for balancing the
losses.
Lresponse utilizes DIST (Huang et al., 2022), a

technique originally used in image networks, as
a cross-modal distillation for ERC. As shown in



Figure 2, effective knowledge distillation can be
challenging due to the significant gap between the
text modality and the other two modalities. There-
fore, unlike conventional KD methods, we use a
KD approach(Lresponse) that utilizes Pearson cor-
relation coefficients instead of KL divergence as
follows.

d(µ, υ) = 1− ρ(µ, υ) (7)

where ρ(µ, υ) is the Pearson correlation coefficient
between two probability vectors µ and υ.

Specifically, Lresponse aims to distill prefer-
ences (relative rankings of predictions) by teach-
ers through the correlations between teacher and
student predictions, which can usefully perform
knowledge distillation even in the extreme differ-
ences between teacher and student. We gather the
predicted probability distributions for all instances
within a batch and calculate the Pearson correla-
tion coefficient between the teacher and student for
inter-class and intra-class relations (Figure 3). Sub-
sequently, we transfer the inter-class and intra-class
relation to the student. The specific formulation of
the response-based distillation can be described as
follows.

Y t
i,: = softmax(Zt

i,:/τ) (8)

Y s
i,: = softmax(Zs

i,:/τ) (9)

Linter =
τ2

B

B∑
i=1

d(Y s
i,:, Y

t
i,:) (10)

Lintra =
τ2

C

C∑
j=1

d(Y s
:,j , Y

t
:,j) (11)

Lresponse = Linter + Lintra (12)

Given a training batch B and the emotion cate-
gories C, Zs ∈ RB×C is the prediction matrix of
the student and Zt ∈ RB×C is the prediction ma-
trix of the teacher. τ > 0 is a temperature parameter
to control the softness of logits.

However, rather than relying solely on Lresponse,
we introduce Lfeature as an additional distillation
loss to better leverage the embedded information in
the teacher network. Lfeature aims to mitigate the
heterogeneity between the representations of the
teacher and student models, allowing us to distill
richer knowledge from the teacher compared to us-
ing only Lresponse. Through this, the features of the

Figure 4: Attention-based modality Shifting Fusion

students can faithfully support the teacher during
the multimodal fusion stage. Lfeature leverages the
similarity among normalized representation vectors
of the teacher and the student within a batch (Fig-
ure 3). We construct the target similarity matrix
by performing a dot product between the represen-
tation matrix of the teacher and its transposition
matrix. By applying the softmax function to this
matrix, we derive the target probability distribution
as follows.

Pi =
exp(Mi,j/τ)∑B
l=1 exp(Mi,l/τ)

, ∀i, j ∈ B (13)

where B is a training batch and M ∈ RB×B is
the target similarity matrix. τ > 0 is a temperature
parameter controlling the smoothness of the distri-
bution. Pi is the target probability distribution.

Similarly, we can compute the similarity matrix
between the teacher and the student by taking the
dot product of their representations. Subsequently,
we can calculate the similarity probability distribu-
tion as follows.

Qi =
exp(M ′

i,j/τ)∑B
l=1 exp(M

′
i,l/τ)

,∀i, j ∈ B (14)

where M ′ ∈ RB×B is the similarity matrix of stu-
dent and teacher. Qi is the similarity probability
distribution of teacher and student.

With these two probability distributions, we com-
pute the KL divergence as the loss for the feature-
based distillation.



Lfeature =
1

B

B∑
i=1

KL(Pi ∥ Qi) (15)

where KL is the Kullback–Leibler divergence.

3.2.4 Attention-based modality Shifting
Fusion

The emotional features from the enhanced student
networks can impact the teacher model’s emotion-
relevant representations, providing information that
may not be captured from the text. To fully utilize
these features, we adopt a multimodal fusion ap-
proach where feature vectors from the student mod-
els manipulate the representation vectors from the
teacher, effectively incorporating non-verbal infor-
mation into the representation vector. To highlight
non-verbal characteristics, we concatenate the vec-
tors of the student models and perform multi-head
self-attention. The vectors of non-verbal informa-
tion generated through the multi-head self-attention
process and emotional features of the teacher en-
coder enter the input of the shifting step (Figure
4). We are inspired by Rahman et al. (2020) to
construct the shifting step. In the shifting step, a
gating vector is generated by concatenating and
transforming the vector of the teacher model and
the vector of the non-verbal information.

gkAV = R(W1· < FTk
, F k

attention > +b1) (16)

where <,> is the operation of vector concatenation,
R(x) is a non-linear activation function, W1 is the
weight matrix for linear transform, and b1 is scalar
bias. Fattention is the emotional representation vec-
tors of non-verbal information. gAV is the gating
vector. The gating vector highlights the relevant in-
formation in the non-verbal vector according to the
representations of the teacher model. We define the
displacement vector by applying the gating vector
as follows.

Hk = gkAV · (W2 · F k
attention + b2) (17)

where W2 is the weight matrix for linear trans-
form and b2 is scalar bias. H is the non-verbal
information-based displacement vector.

We subsequently utilize the weighted sum be-
tween the representation vector of the teacher and
the displacement vector to generate a multimodal
vector. Finally, we predict emotions using the mul-
timodal vector.

Zk = FTk
+ λ ·Hk (18)

Dataset
IEMOCAP MELD

train dev test train dev test
Dialogue 108 12 31 1038 114 280
Utterance 5163 647 1623 9989 1109 2610
Classes 6 7

Table 1: Statistics of the two benchmark datasets.

λ = min(
∥Fk∥2
∥Hk∥2

· θ, 1) (19)

where Z is the multimodal vector. We apply the
scaling factor λ to control the magnitude of the
displacement vector and θ as a threshold hyperpa-
rameter. ∥Fk∥2, ∥Hk∥2 denote the L2 norm of the
Fk and Hk vectors respectively.

4 Experiments

4.1 Datasets

We evaluate our proposed network on MELD (Po-
ria et al., 2018) and IEMOCAP (Busso et al.,
2008) following other works on ERC listed in Ap-
pendix A.3. The statistics are shown in Table 1.

MELD is a multi-party dataset comprising over
1400 dialogues and over 13,000 utterances ex-
tracted from the TV series Friends. This dataset
contains seven emotion categories for each utter-
ance: neutral, surprise, fear, sadness, joy, disgust,
and anger.

IEMOCAP consists of 7433 utterances and 151
dialogues in 5 sessions, each involving two speak-
ers per session. Each utterance is labeled as one
of six emotional categories: happy, sad, angry, ex-
cited, frustrated and neutral. The train and devel-
opment datasets consist of the first four sessions
randomly divided at a 9:1 ratio. The test dataset
consists of the last session.

We purposely exclude CMU-MOSEI (Zadeh
et al., 2018), a well-known multimodal sentiment
analysis dataset, as it comprises single-speaker
videos and is not suitable for ERC, where emo-
tions dynamically change within each conversation
turn.

4.2 Experiment Settings

We evaluate all experiments using the weighted av-
erage F1 score on two class-imbalanced datasets.
We use the initial weight of the pre-trained mod-
els from Huggingface’s Transformers (Wolf et al.,
2019). The output dimension of all encoders is uni-
fied to 768. The optimizer is AdamW and the initial
learning rate is 1e-5. We use a linear schedule with



Models
MELD: Emotion Categories IEMOCAP

Neutral Surprise Fear Sadness Joy Disgust Anger F1 F1
DialogueRNN (Majumder et al., 2019) 73.50 49.40 1.20 23.80 50.70 1.70 41.50 57.03 62.75

ConGCN (Zhang et al., 2019) 76.70 50.30 8.70 28.50 53.10 10.60 46.80 59.40 64.18
MMGCN (Hu et al., 2021b) - - - - - - - 58.65 66.22

DialogueTRM (Mao et al., 2021) - - - - - - - 63.50 69.23
DAG-ERC (Shen et al., 2021) - - - - - - - 63.65 68.03
MM-DFN (Hu et al., 2022a) 77.76 50.69 - 22.94 54.78 - 47.82 59.46 68.18

M2FNet (Chudasama et al., 2022) - - - - - - - 66.71 69.86
EmoCaps (Li et al., 2022) 77.12 63.19 3.03 42.52 57.50 7.69 57.54 64.00 71.77
UniMSE (Hu et al., 2022b) - - - - - - - 65.51 70.66
GA2MIF (Li et al., 2023a) 76.92 49.08 - 27.18 51.87 - 48.52 58.94 70.00

FacialMMT (Zheng et al., 2023) 80.13 59.63 19.18 41.99 64.88 18.18 56.00 66.58 -
TelME 80.22 60.33 26.97 43.45 65.67 26.42 56.70 67.37 70.48

Table 2: Performance comparisons on MELD (7-way) and IEMOCAP

warmup for the learning rate scheduler. All experi-
ments are conducted on a single NVIDIA GeForce
RTX 3090. More details are in Appendix A.2.

4.3 Main Results

We compare TelME with various multimodal-based
ERC methods (explained in Appendix A.3) on both
datasets in Table 2. TelME demonstrates robust
results in both datasets and achieves state-of-the-
art performance on MELD. Specifically, TelME
outperforms the previous state-of-the-art method
(M2FNet) in MELD by 0.66%, and exhibits a sub-
stantial 3.37% improvement in MELD compared
to EmoCaps, which currently achieves state-of-the-
art performance in IEMOCAP. Previous methods,
such as EmoCaps and UniMSE, have also shown
effectiveness in IEMOCAP but exhibit somewhat
weaker performance on MELD.

As shown in Table 2, we report the performance
of various methods for emotion labels in MELD.
TelME outperforms other models in all emotions
except Surprise and Anger. However, assuming
that Surprise and Fear, as well as Disgust and
Anger, are similar emotions, Emocaps shows a
bias towards Surprise and Anger during inference,
only achieving 3.03% and 7.69% in F1 score for
Fear and Disgust, respectively. On the other hand,
TelME distinguishes these similar emotions bet-
ter, bringing the scores for Fear and Disgust up to
26.97% and 26.42%. We speculate that our frame-
work predicts minority emotions more accurately
as the non-verbal modality information (e.g., inten-
sity and pitch of an utterance) enhanced through
our KD strategy better assists the teacher in judging
the confusing emotions.

Methods Remarks IEMOCAP MELD
Audio KD 48.11 46.60
Visual KD 18.85 36.72
Text - 66.60 66.57

Text + Visual ASF 67.94 67.05
Text + Audio ASF 69.26 67.19

TelME 70.48 67.37

Table 3: Performance comparison for single modality
and multiple multimodal combinations

4.4 The Impact of Each Modality

Table 3 presents the results for single-modality and
multimodal combinations. The single-modality per-
formances for audio and visual are the results after
applying our knowledge distillation method, and
the same fusion approach as TelME is used for
dual-modality results. The text modality performs
the best among the single-modality, which sup-
ports our decision to use the text encoder as the
teacher model. Additionally, the combination of
non-verbal modalities and text modality achieves
superior performance compared to using only text.
Our findings indicate that the audio modality sig-
nificantly contributes more to emotion recognition
and holds greater importance compared to the vi-
sual modality. We speculate this can be attributed
to its ability to capture the intensity of emotion
through variations in the tone and pitch of the
speaker. Overall, our method achieves 3.52% im-
provement in IEMOCAP and 0.8% in MELD over
using only text.

4.5 Ablation Study

We conduct an ablation study to validate our knowl-
edge distillation and fusion strategies in Table 4.
The initial row for each dataset represents the out-



Dataset ASF L_response L_feature F1

IEMOCAP

✗ ✗ ✗ 63.33
✓ ✗ ✗ 68.19
✓ ✓ ✗ 69.42
✓ ✓ ✓ 70.48

MELD

✗ ✗ ✗ 67.04
✓ ✗ ✗ 66.75
✓ ✓ ✗ 67.23
✓ ✓ ✓ 67.37

Table 4: Results of ablation study. Here, Lresponse is
our response-based distillation, Lfeature is our feature-
based distillation and ASF is our fusion method.

come of training each modality encoder using cross-
entropy loss and concatenating the embeddings
without incorporating distillation loss and our fu-
sion method.

Using our fusion method alone, IEMOCAP
showed performance improvement, but MELD
showed poor performance. The effectiveness of
our fusion method in achieving optimal modality
interaction cannot be guaranteed without knowl-
edge distillation. Because each encoder is trained
independently, focusing solely on improving its per-
formance without considering the multimodal in-
teraction. On the other hand, as our knowledge dis-
tillation components are added, these bring about
consistent improvements for both datasets.

When we examine the specific effects of the
KD strategy, we observe performance improve-
ments for both datasets, even when using only
Lresponse, presenting its efficacy in closing the gap
between the teacher and the students. Furthermore,
adding Lfeature aimed to leverage the richer knowl-
edge of the teacher is more effective in IEMOCAP
and shows marginal performance enhancements
in MELD. However, we speculate that the slight
improvement in MELD may be attributed to class
imbalance. While TelME significantly outperforms
existing approaches in minority classes of MELD,
the weighted F1 score is only slightly improved due
to the low number of samples. We show an analysis
of this class imbalance problem in Section 4.7 as
well as an error analysis of the emotion classes in
Appendix A.4.

Figure 5 shows the individual performance of
the audio and visual modalities based on the distil-
lation loss. We observe that applying both types of
distillation loss is more effective compared to not
applying them. The performance of visual modal-
ity on the IEMOCAP dataset has declined, possi-

Figure 5: Individual performance of audio and visual
modalities according to knowledge distillation type.

bly because facial expressions are not effectively
captured in the limited image frames of a short
utterance. However, even with lower individual
performance, all modalities have been shown to
contribute to the improvement of emotion recogni-
tion performance through our approach (Table 3).

4.6 Study on Teacher Modality

MELD IEMOCAP
TelME (Audio Teacher) 56.28 49.36
TelME (Visual Teacher) 56.85 56.78
TelME (Text Teacher) 67.37 70.48

Table 5: TelME Performance by Teacher Modality

To assess the optimality of employing text
modality as the teacher, we conduct comparative
experiments by setting each modality as the teacher
modality, which is shown in Table 5. Our study
shows that the TelME framework performs best
with the text encoder as the teacher, while treat-
ing the other modalities as the teacher significantly
hinders model performance.

Additionally, Table 6 reports the individual per-
formance of the student models based on the
teacher modality. The diagonals (cases where
the teacher and student modalities are the same)
in Table 6 represent results without performing



Audio Student Visual Student Text Student
Audio Teacher 44.55 34.86 54.83

MELD Visual Teacher 40.18 36.14 59.72
Text Teacher 46.60 36.72 66.60

Audio Teacher 42.24 20.45 57.42
IEMOCAP Visual Teacher 44.13 22.06 63.94

Text Teacher 48.11 18.85 66.57

Table 6: Teacher Modality Study on MELD and IEMO-
CAP

Knowledge Distillation (KD). Our comparative ex-
periment results show that a robust text encoder
can most effectively serve as the teacher. Specif-
ically, designating the text encoder as the teacher
enhances the performance of all student models
except for the visual student in IEMOCAP. On the
other hand, it is evident that treating a weak non-
verbal model as the teacher impairs student perfor-
mance, thereby performing suboptimally compared
to having a text-based teacher.

4.7 Class Imbalance

Figure 6: Count distribution of emotion classes for both
MELD and IEMOCAP datasets

Figure 6 illustrates the label distribution within
the MELD and IEMOCAP datasets. Notably, the
MELD dataset exhibits a pronounced imbalance,
with the "neutral" class comprising the majority
at 47% of the data, followed by "joy" with 17%
and "surprise" with 12%. This substantial class
imbalance presents a challenge in the context of
distillation, specifically for the teacher encoder to
initially identify the minority classes and subse-
quently transfer this information to the non-verbal
student encoders. We believe that this class im-

balance is a contributing factor to the limited ob-
served improvements associated with Lfeature in
the MELD dataset compared to the IEMOCAP
dataset.

5 Conclusion

This paper proposes Teacher-leading Multimodal
fusion network for ERC (TelME), a novel mul-
timodal ERC framework. TelME incorporates a
cross-modal distillation that transfers the knowl-
edge of text encoders trained in linguistic contexts
to enhance the effectiveness of non-verbal modali-
ties. Moreover, we employ the fusion method that
shifts the features of the teacher model by referring
to non-verbal information. We show through ex-
periments on two benchmarks that our approach
is practical in ERC. TelME delivers robust per-
formance in both datasets and especially achieves
state-of-the-art results in the MELD dataset, which
consists of multi-party conversational scenarios.
We believe that this research presents a new direc-
tion that can incorporate multimodal information
for ERC.

Limitations

This study has a limitation wherein the visual
modality shows a lower capability to recognize
emotions compared to the audio modality. To ad-
dress this limitation, future research should focus
on developing techniques to accurately capture and
interpret the facial expressions of the speaker dur-
ing brief utterances. By improving the extraction of
visual features, the effectiveness of knowledge dis-
tillation can be significantly enhanced, thus show-
casing its potential to make a more substantial con-
tribution to emotion recognition.
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A Appendix

A.1 Effect of the prompt

MELD IEMOCAP
w/o prompt ([cls]+context) 65.25 66.48

context + prompt 66.57 66.60

Table 7: Comparison of the teacher performance based
on the use of the prompt

Table 7 shows an ablation experiment on the
prompt. We remove the prompt and use the CLS
token to compare emotion prediction results with
the results using the prompt. We observe from the
results that the prompt helps to infer the emotion
of a recent speaker from a set of textual utterances.

A.2 Hyperparameter Settings
Through our KD strategy, audio and visual en-
coders are trained using the loss functions men-
tioned in Equation 6. In Lstudent, the balancing
factors are all set to 1, excluding α for IEMOCAP.
The temperature parameter for the Lresponse func-
tion is adjusted to 4 for MELD and 2 for IEMO-
CAP. The temperature parameter for Lfeature is

Hyperparameter IEMOCAP MELD
Knowledge distillation
Balance factors for Lstudent α=0.1 1
Temperature for Lresponse 4 2
Temperature for Lfeature 1 1
Attention modality Shifting Fusion
Threshold parameter 0.01 0.1
Dropout 0.2 0.1
The number of heads for multi-head attention 4 3

Table 8: hyperparameter settings of TelME on two
datasets

set to 1 regardless of the dataset. We also use a
fusion method that shifts vectors in the teacher
model, where the threshold parameter is set to 0.01
for IEMOCAP and 0.1 for MELD. Furthermore,
Dropout is adjusted to 0.2 for MELD and 0.1 for
IEMOCAP. The number of heads used in the multi-
head attention process is 4 for IEMOCAP and 3 for
MELD.

A.3 Compared Models

We compare TelME against the following models:
DialogueRNN (Majumder et al., 2019) employs
Recurrent Neural Networks (RNNs) to capture the
speaker identity as well as the historical context and
the emotions of past utterances to capture the nu-
ances of conversation dynamics. ConGCN (Zhang
et al., 2019) utilizes a Graph Convolutional Net-
work (GCN) to represent relationships within a
graph that incorporates both context and speaker
information of multiple conversations. MMGCN
(Hu et al., 2021b) also proposes a GCN-based ap-
proach, but captures representations of a conver-
sation through a graph that contains long-distance
flow of information as well as speaker information.
DialogueTRM (Mao et al., 2021) focuses on mod-
eling both local and global context of conversations
to capture the temporal and spatial dependencies.
DAG-ERC (Shen et al., 2021) studies how conver-
sation background affects information of the sur-
rounding context of a conversation. MMDFN (Hu
et al., 2022a) proposes a framework that aims to en-
hance integration of multimodal features through
dynamic fusion. EmoCaps (Li et al., 2022) in-
troduces an emotion capsule that fuses informa-
tion from multiple modalities with emotional ten-
dencies to provide a more nuanced understanding
of emotions within a conversation. UniMSE (Hu
et al., 2022b) seeks to unify ERC with multimodal
sentiment analysis through a T5-based framework.
GA2MIF (Li et al., 2023a) introduces a two-stage
multimodal fusion of information from a graph and



an attention network. FacialMMT (Zheng et al.,
2023) focuses on extracting the real speaker’s face
sequence from multi-party conversation videos and
then leverages auxiliary frame-level facial expres-
sion recognition tasks to generate emotional visual
representations.

A.4 Error Analysis

Figure 7: Confusion Matrices on IEMOCAP and MELD

Figure 7 shows the normalized confusion matri-
ces of the TelME and the understated model for two
datasets. We can evaluate the quality of the emotion
prediction through the confusion matrix. TelME
shows better True Positive results in almost all emo-
tion classes. This suggests that TelME is extracting
and fusing finer-grained features to infer emotions
without bias. TelME better classifies similar emo-
tions compared to the understated model(e.g., ex-
cited and happy, angry and frustrated). However,
the result of misclassifying happy as exciting is
a little high. This result is due to the lowest per-
centage of happy in IEMOCAP with unbalanced
classes. Even in the case of MELD, the emotion
in which most emotion classes are misclassified is
neutral, with the highest count. We can observe a
similar misclassification tendency in other research
(Chudasama et al., 2022; Hu et al., 2023) as well.
Hence, we suspect that the cause of misclassifica-
tion is not a problem with the method we proposed
but rather stems from a class imbalance issue.

SEED MELD IEMOCAP
0 67.27 70.50
1 67.41 70.69

1234 67.44 70.21
2023 67.24 69.95

42 67.37 70.48
mean 67.35 70.37

standard deviation 0.0781 0.2581

Table 9: Performance of the full framework for five
random seeds

A.5 Results of Random Seed Numbers

We report all outcomes based on the seed number
42 following previous studies (Lee and Lee, 2021;
Song et al., 2022a; Hu et al., 2022b). However,
to validate TelME’s robustness to randomness, we
present experiment results with different seed num-
bers in Table 9. The results in Table 10 demonstrate
that the performance of TelME is robust to seed
variations.

A.6 Utility of TelME

TelME Label Text Audio Visual
anger anger disgust anger neutral

neutral neutral surprise neutral neutral
joy joy surprise anger neutral

anger anger surprise neutral neutral
joy joy disgust joy joy

sadness sadness fear neutral neutral
joy joy surprise joy anger

neutral neutral sadness neutral sadness

Table 10: inference results of each unimodal model and
TelME on MELD

Table 10 presents a segment of the ground truth
label from the MELD dataset, along with inference
outcomes of each unimodal model (Text teacher,
non-verbal students) and TelME. The results indi-
cate that student models can make different judg-
ments than the text teacher even after knowledge
distillation. Moreover, the final decision of TelME,
supported by complementary information from
non-verbal modalities, might diverge from the pre-
diction of the text teacher, rectifying any inaccura-
cies. This implies that TelME utilizes multimodal
information instead of heavily depending on any of
the three modalities.



Models
IEMOCAP: Emotion Categories

Happy Sad Neutral Anger Excited Frustrated F1
DialogueRNN (Majumder et al., 2019) 33.18 78.80 59.21 65.28 71.86 58.91 62.75

MMGCN (Hu et al., 2021b) 42.34 78.67 61.73 69.00 74.33 62.32 66.22
DialogueTRM (Mao et al., 2021) 48.70 77.52 74.12 66.27 70.24 67.23 69.23

DAG-ERC (Shen et al., 2021) - - - - - - 68.03
MM-DFN (Hu et al., 2022a) 42.22 78.98 66.42 69.77 75.56 66.33 68.18

M2FNet (Chudasama et al., 2022) - - - - - - 69.86
EmoCaps (Li et al., 2022) 71.91 85.06 64.48 68.99 78.41 66.76 71.77
UniMSE (Hu et al., 2022b) - - - - - - 70.66
GA2MIF (Li et al., 2023a) 46.15 84.50 68.38 70.29 75.99 66.49 70.00

TelME 49.46 83.48 67.42 68.49 77.38 68.63 70.48

Table 11: Performance comparisons on IEMOCAP (6-way)

A.7 Performance comparisons on IEMOCAP
Table 11 shows a performance comparison of our
approach and other approaches on IEMOCAP
dataset.


